LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc., DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER – NOVEMBER 2013

MT 1500 - ALGEBRA, ANALY.GEO., CALCULUS & TRIGONOMETRY

Date : 12/11/2013 Dept. No. Time : 1:00 - 4:00

PART - A

ANSWER ALL THE QUESTIONS:

- 1. Find the n^{th} differential coefficient of $(ax+b)^m$.
- 2. Find the slope of the tangent with the initial line for the cardioid $r = a(1 \cos \theta)$ at $\theta = \pi/6$.
- 3. Write the cartesian formula for the radius of curvature.
- 4. Find the p-r equation of the curve $r = a \sin \theta$.
- 5. Find the equation with rational coefficients whose roots are 1, $(3 \sqrt{-2})$.
- 6. If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$, find the value of $\sum \alpha^2$.
- 7. Write down the expansion of $\sin 5\theta$.
- 8. Prove that $\cosh^2 x \sinh^2 x = 1$.
- 9. Define conjugate diameter of an ellipse.
- 10. Find asymptotes of the hyperbola $3x^2 5xy 2y^2 + 17x + y + 14 = 0$.

<u>PART – B</u>

ANSWER ANY FIVE QUESTIONS:

- 11. Find the n^{th} differential coefficient of $\sin^7 \theta \cos^5 \theta$.
- 12. Find the angle of intersection of the cardioids $r = a(1 + \cos \theta)$ and $r = b(1 \cos \theta)$.
- 13. Prove that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$ and $y = a(1 \cos \theta)$ is $4a \cos \frac{\theta}{2}$.
- 14. Solve the equation $81x^3 18x^2 36x + 8 = 0$ whose roots are in harmonic progression.
- 15. Find the roots of the equation $x^5 + 4x^4 + 3x^3 + 3x^2 + 4x + 1 = 0$.
- 16. If $\sin(A+iB) = x + iy$, prove that i) $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$ and ii) $\frac{x^2}{\sin^2 A} \frac{y^2}{\cos^2 A} = 1$.

17. If P and D are extremities of conjugate diameters of the ellipse, show that the locus of the point of

intersection of the tangents at P and D is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$.

18. Derive the polar equation
$$\frac{l}{r} = 1 + e \cos \theta$$
 of a conic.

(10 x 2 = 20 marks)

 $(5 \times 8 = 40 \text{ marks})$

:

Max.: 100 Marks

<u> PART – C</u>

ANSWER ANY TWO QUESTIONS:

 $(2 \times 20 = 40 \text{ marks})$

- 19. a) If $y = \sin(m\sin^{-1}x)$, prove that $(1-x^2)y_2 xy_1 + m^2y = 0$ and $(1-x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$.
 - b) Show that, in the parabola $y^2 = 4ax$, the subtangent at any point is double the abscissa and the subnormal is constant.
- 20. a) Show that the radius of curvature at any point on the equi angular spiral $r = ae^{\theta \cot \alpha}$ is $r \cos ec \alpha$.
 - b) If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$. Find the value of $(\alpha^2 + 1)(\beta^2 + 1)(\gamma^2 + 1)$.

21. a) Find the real roots of $x^3 - 3x + 1 = 0$ to three places of decimal using Horner's rule. b)Prove that $\frac{\sin 7\theta}{\sin \theta} = 64\cos^6 \theta - 80\cos^4 \theta + 24\cos^2 \theta - 1$.

22. a)Sum to infinity $c \sin \alpha - \frac{c^2}{2} \sin 2\alpha + \frac{c^3}{3} \sin 3\alpha + \dots \infty$.

b) If e, e_1 are the eccentricities of a hyperbola and its conjugate, show that $\frac{1}{e^2} + \frac{1}{e_1^2} = 1$.

\$\$\$\$\$\$\$