B.Sc., DEGREE EXAMINATION - MATHEMATICS
 FIRST SEMESTER - NOVEMBER 2013

MT 1500 - ALGEBRA, ANALY.GEO., CALCULUS \& TRIGONOMETRY

Dept. No. \square Max. : 100 Marks
Time : 1:00-4:00

PART - A

ANSWER ALL THE QUESTIONS:

1. Find the $n^{t h}$ differential coefficient of $(a x+b)^{m}$.
2. Find the slope of the tangent with the initial line for the cardioid $r=a(1-\cos \theta)$ at $\theta=\pi / 6$.
3. Write the cartesian formula for the radius of curvature.
4. Find the p-r equation of the curve $r=a \sin \theta$.
5. Find the equation with rational coefficients whose roots are $1,(3-\sqrt{-2})$.
6. If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$, find the value of $\sum \alpha^{2}$.
7. Write down the expansion of $\sin 5 \theta$.
8. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
9. Define conjugate diameter of an ellipse.
10. Find asymptotes of the hyperbola $3 x^{2}-5 x y-2 y^{2}+17 x+y+14=0$.

$\underline{\text { PART - B }}$

ANSWER ANY FIVE QUESTIONS:

11. Find the $n^{\text {th }}$ differential coefficient of $\sin ^{7} \theta \cos ^{5} \theta$.
12. Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
13. Prove that the radius of curvature at any point of the cycloid $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$ is $4 a \cos \frac{\theta}{2}$.
14. Solve the equation $81 x^{3}-18 x^{2}-36 x+8=0$ whose roots are in harmonic progression.
15. Find the roots of the equation $x^{5}+4 x^{4}+3 x^{3}+3 x^{2}+4 x+1=0$.
16. If $\sin (A+i B)=x+i y$, prove that i) $\frac{x^{2}}{\cosh ^{2} B}+\frac{y^{2}}{\sinh ^{2} B}=1$ and ii) $\frac{x^{2}}{\sin ^{2} A}-\frac{y^{2}}{\cos ^{2} A}=1$.
17. If P and D are extremities of conjugate diameters of the ellipse, show that the locus of the point of intersection of the tangents at P and D is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.
18. Derive the polar equation $\frac{l}{r}=1+e \cos \theta$ of a conic.

$\underline{\text { PART - C }}$

ANSWER ANY TWO QUESTIONS:

19. a) If $y=\sin \left(m \sin ^{-1} x\right)$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$ and $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$.
b) Show that, in the parabola $y^{2}=4 a x$,the subtangent at any point is double the abscissa and the subnormal is constant.
20. a) Show that the radius of curvature at any point on the equi angular spiral $r=a e^{\theta \cot \alpha}$ is $r \operatorname{cosec} \alpha$.
b) If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$. Find the value of $\left(\alpha^{2}+1\right)\left(\beta^{2}+1\right)\left(\gamma^{2}+1\right)$.
21. a) Find the real roots of $x^{3}-3 x+1=0$ to three places of decimal using Horner's rule.
b)Prove that $\frac{\sin 7 \theta}{\sin \theta}=64 \cos ^{6} \theta-80 \cos ^{4} \theta+24 \cos ^{2} \theta-1$.
22. a)Sum to infinity $c \sin \alpha-\frac{c^{2}}{2} \sin 2 \alpha+\frac{c^{3}}{3} \sin 3 \alpha+\ldots \infty$.
b) If e, e_{1} are the eccentricities of a hyperbola and its conjugate, show that $\frac{1}{e^{2}}+\frac{1}{e_{1}^{2}}=1$.
